赛灵思新一代计算平台ACAP技术细节全揭秘

2019-04-05 11:28:16 老石谈芯
来源:老石谈芯

在日前召开的FPGA领域的学术顶会--2019年“FPGA国际研讨会”上,赛灵思发表了两篇长论文,详细介绍了赛灵思“自适应计算加速平台”ACAP的系统架构和技术细节。本文将对ACAP的主要架构创新进行深入解读,让各位先睹为快。

 

ACAP概述

ACAP是赛灵思在2018年推出的新一代计算平台。在发布伊始,赛灵思新任掌门人Victor Peng就再三强调,ACAP并不是FPGA,而是整合了硬件可编程逻辑单元、软件可编程处理器、以及软件可编程加速引擎的计算平台产品,是赛灵思“发明FPGA以来最卓越的工程成就”,足可见这个产品系列的重要性。

与其说ACAP是某种具体的芯片产品,不如说它像FPGA一样,代指一种芯片架构。而赛灵思这次发表的论文,主要介绍的是基于ACAP架构的首款产品,名为Versal,并将基于台积电的7纳米工艺制造。相比传统的FPGA架构,Versal ACAP在系统架构、电路结构、互联方式等很多方面进行了大胆革新,这也是本文将要讨论的重点。

芯片架构

Versal ACAP的芯片布局如下图所示。总体来看,它与传统FPGA结构非常类似,主要包含可编程逻辑部分、高速I/O与收发器、嵌入式处理器、存储器控制等FPGA的常见硬件资源与模块。

值得注意的是,ACAP架构与传统FPGA有两点主要区别:

  1. 芯片顶端(北侧)包含了AI加速引擎阵列,它们主要用来加速机器学习和无线网络等应用中常见的数学计算。然而,关于AI引擎的具体结构,在这篇论文中并未提及。
  2. 在传统FPGA片上互联技术的基础上,ACAP采用了固化的片上网络(NoC),这主要是针对高带宽、高吞吐量的应用场景,如存储器控制和AI应用等,在上图中也可以清晰的看到NoC与这些应用模块的紧密互联。

关于NoC的具体技术细节,在本次会议有另外一篇论文进行详细阐述,见下图。本文将对其进行简单概述,并会在下篇文章中深入解析。

除NoC以外,ACAP选择将很多常用的IP固化在芯片上,以提高性能、稳定性,并减少额外的可编程逻辑资源的使用。除了常见的PCIe、DDR控制器、以太网MAC之外,ACAP还选择将嵌入式处理器芯片管理单元进行固化,这令人有些意外。

 

在论文中介绍,在亚马逊AWS F1实例中使用的片上管理单元占据了芯片面积的很大部分,如下图所示,而这也是赛灵思选择在ACAP上对这类逻辑进行固化的主要原因。

 

在可编程芯片上固化逻辑其实是一把双刃剑,在提升性能和降低逻辑单元使用率的同时,牺牲的是被固化单元的灵活性。因此,往往只会选择固化已经由成熟标准的逻辑单元,比如上文提到的通信接口与内存控制器等。对于芯片管理单元,固化后是否仍能适用于不同的应用场景?是否比集成ARM等硬核处理器更有效?这些问题就需要通过实际使用得到答案。

 

Versal ACAP架构的一个主要的创新之处,就是采用了非常规整的可编程逻辑阵列和时钟域分布。老石之前曾介绍过一种名为“Overlay”的FPGA虚拟化技术,它的本质就是在FPGA的硬件层之上,抽象出一层虚拟的Overlay结构,如下图所示。Overlay层基于CGRA等规整的逻辑结构,对应用层非常友好,但对不规整的FPGA底层架构而言,实现起来势必会造成资源的浪费和性能的损失。

ACAP架构采用了更加规整的可编程逻辑阵列,以及分布均匀的时钟域,理论上这是极其有用的创新,特别是对于布局布线后的设计而言。通过这种方式,使得IP接口可以复用,即把一个IP从一个位置挪到另一个位置时,不需要对整个设计重新编译,只需要单独处理修改的部分即可。

 

更重要的是,这使得用户可以重复使用已经完成布局布线的“半成品”或“模板”,只需要在事先保留的区域内加入新设计即可,这样可以极大的减少编译时间。这个创新与目前FPGA已有的划分可编程区域等技术类似,但更进一步。只可惜,在这篇论文中没有给出这个创新的任何实例或数据,因此很难确定这项技术是否已经实现,还是仅仅停留在理论层面。

CLB微结构

CLB是可编程逻辑块的缩写,它包含了多个可编程逻辑单元及其互联。与传统FPGA相比,Versal ACAP对它的CLB微结构进行了重大革新,用“翻天覆地”来形容也不为过。其中,最主要的架构变化有以下四点。

 

首先,CLB的容量相较UltraScale FPGA架构扩大了四倍,包含32个LUT和64个寄存器,见下图。

这样做的主要目的,是为了减少全局布线资源的使用。ACAP为每个CLB设置了单独的内部高速互联,与全局布线相比,这些内部互联更加快速,布线逻辑也更简单,从而减轻了全局布线的压力与拥挤。如下图所示,采用了大CLB后,有18%的布线可以通过内部互联完成。而对于传统FPGA,只有7%的布线能在CLB内完成,其他都需要占用全局布线资源。

第二,每个查找表结构(LUT)增加了一个额外的输出,这是一个重要的架构变化。传统FPGA的LUT结构为6输入、2输出,如下图所示,可以实现任意的6输入逻辑,或者两个5输入逻辑。当添加了一个新的输出O5_2之后,就可以实现两个独立的6输入逻辑功能。

这种结构的另外一个好处,是允许更多的逻辑功能进行合并,以减少LUT的使用量。FPGA设计工具会根据两个LUT的距离,判断这两个LUT里的逻辑能否进行合并。例如,与UltraScale架构相比,当两个LUT之间的距离小于5个Slice网格距离时,Versal ACAP架构能多合并21.5%的逻辑功能,从而减少相应的硬件资源使用。

作为代价,在UltraScale架构中存在的Wide Function功能被移走。因此如果需要实现诸如32:1的选择器时,就可能会扩展到多个Slice,对时序造成负面影响,并且需要额外的硬件资源支持。

 

第三,每个Slice的进位链逻辑结构进行了彻底修改,如下图所示。事实上,一直是现代FPGA标配的固化进位链被完全移除,取而代之的是使用LUT中新增加的cascade_in和LUT逻辑完成加法结构。

论文中对这部分的讨论过于简单,对这个重要的架构改变没有给出详细原因,对上图中Versal进位链的具体实现结构也含糊不清。老石猜测,这个改变的主要原因还是由于新增加的第二个LUT输出,如果继续保留进位链逻辑,会导致LUT间延时过大,从而影响时序。但是,这种新的进位链结构是否会对算术运算的性能产生负面影响,赛灵思并未在论文中给出数据佐证。

 

第四,引入了名为“Imux寄存器”的新结构。这种新寄存器架构很明显是用来对标英特尔的HyperFlex架构。Imux寄存器共有四种模式,如下图所示。

这种架构只在CLB之前引入了用于优化时序、增加流水线的寄存器。同时,这些寄存器包含了复位、初始化、时钟使能等常见寄存器功能。这与HyperFlex的海量寄存器架构有着明显不同,如下图。Imux没有在全部布线资源上都设置寄存器,因此引入的额外延时会更小。但在深度流水线设计中,这种结构的绝对性能应该不如HyperFlex架构。

上面的四种Imux使用模式在本文中不再赘述,例如下图展示了其中的Time Borrowing、Pipelining、以及二者结合的模式。但这几种方式与传统的流水线和Retiming方式并没有本质区别。

关于Imux寄存器架构,这篇论文最严重的问题在于实测数据和对比很少。这样的实验和论述,使得这部分内容更像一篇白皮书,而非高端学术论文。严谨的学术方法是需要兼顾可重复性和标准性,例如,选取一些标准的参考设计和Benchmark,分别使用英特尔的HyperFlex架构、赛灵思的UltraScale架构,以及这里提出的Imux架构,进行实现,并测量这些在这些架构上分别能得到多快的运行频率。很显然,这篇论文在很多地方都存在这样的问题。

3D芯片制造技术SSIT

ACAP采用了赛灵思的第四代硅片堆叠技术SSIT。关于这个技术的细节,老石在之前的文章中详细介绍过。这个技术本质上是将多个小型硅片,放置在一个大的无源硅中介层上,然后通过硅通孔和芯片连线进行互联,从而组成一个大芯片

这种技术非常适合在每代半导体工艺的发展早期,特别是制造大型硅片的良率较低的情况。另外,SSIT的灵活性比较高,技术思路比较直接,发展至今已有四代,已经比较成熟。

 

不过,这种技术的主要问题非常明显,主要有以下几点:

  1. 当工艺成熟后,这种方式带来的良率提升就不甚明显,综合成本反而会上升。
  2. 将多枚硅片通过硅中间层组合,可能会带来明显的性能降低。这主要受制于硅片间的互联资源,以及互联导线的巨大延迟。
  3. 该技术会限制FPGA配置的灵活性,因为它相当于人为的增加了多个设计区域和边界。这也对设计工具的优化能力造成了很大的挑战。

在这篇论文中,Versal ACAP主要针对上面的第二和第三点进行了优化和改进。例如,在Versal架构中,采用了更多的硅片间的互联通道(SLL channel),如下图所示。同时,这些互联通道的传输延时也得到了进一步优化,相比传统连线的延时下降了30%。

片上网络NoC

片上网络是ACAP的主要技术革新之一。对于诸如DDR、高速网络、PCIe等高速接口与应用来说,通常有着很高的带宽要求。这一方面需要采用高位宽的总线,另一方面需要高速时钟。因此,传统的FPGA设计方法都是通过对总线进行深度流水线来实现。但对于一个大型设计而言,这种方法会很快造成片上布线资源的拥挤。这就需要寻找有效的方法,同时解决高速数据传输和低拥堵布线两个问题。

 

ACAP采用了片上网络(Network-on-Chip,NoC)技术应对上述问题。在传统的FPGA布线资源之外,引入了NoC网络,将需要进行高速数据传输的内容转化成基于数据包的形式,通过NoC的交换机逻辑实现数据交换,如下图所示。与网络应用类似,这种片上网络也能对各类的传输进行服务质量控制(QoS)。

这种方法最大的优点是在系统层面,将数据传输与数据计算进行了分离,从而在保证带宽的基础上,缓解了系统的布局布线压力。例如,数据计算可以在AI引擎或片上其他部分实现,而不需紧靠DDR控制器等高速接口。

 

不过,这种方法的主要问题是引入了额外的传输延时,这对于需要固定延时或者低延时的应用可能会有影响。在这篇论文中,并没有提及延时的数据。此外,片上网络的位宽是固定的,无法对应用进行优化,这也有可能对不同应用的系统性能造成负面影响。

结语

ACAP作为赛灵思重磅推出的下一代计算平台,从发布之初就备受瞩目。究竟ACAP是不是FPGA,这个问题其实并不重要,重要的是ACAP的本质仍然是基于可编程逻辑阵列的异构计算芯片。与传统FPGA架构相比,ACAP带来了诸多系统和微结构的换代和革新,这也让人们看到了业界为了延续摩尔定律的发展所做的不懈努力。 

就这篇论文而言,虽然很多地方的学术严谨性有待提高,但瑕不掩瑜。作为第一篇完整的介绍Versal ACAP架构细节的论文,它还是为我们带来了很多对ACAP新结构、新技术的详细阐述和讨论,也让我们得以一窥ACAP的技术细节。

(注:本文仅代表作者个人观点)

 

关键词:

  • EETOP 官方微信

  • 创芯大讲堂 在线教育

  • 创芯老字号 半导体快讯

全部评论