文章
日志
帖子
首页
论坛
博客
大讲堂
人才网
直播课
资讯
全部
通信/手机
综合电子
测试测量
半导体/EDA
微处理器
模拟/电源
可编程逻辑
嵌入式
汽车电子
医疗电子
工业电子
物联网
可穿戴
机器人/飞行器
其他科技
传感器/Mems
射频微波
人工智能
技术文章
全部
通信/手机
综合电子
测试测量
半导体/EDA
微处理器
模拟/电源
可编程逻辑
嵌入式
汽车电子
医疗电子
工业电子
物联网
可穿戴
机器人/飞行器
其他科技
传感器/Mems
射频微波
人工智能
频道
通信/手机
综合电子
测试测量
半导体/EDA
微处理器
模拟/电源
可编程逻辑
嵌入式
汽车电子
医疗电子
工业电子
物联网
可穿戴
机器人/飞行器
其他科技
传感器/Mems
射频微波
人工智能
登录
注册
创芯云服务 :
创芯投融资 |
创芯大讲堂
|
创芯人才网 |
数字IC职业培训
EETOP诚邀线上IC培训讲师!
技术
首页 >
模拟/电源
>
内容
学子专区—ADALM2000实验:调节基准电压源
2021-06-10 19:47:10
来源:
ADI公司 Doug Mercer,顾问研究员;Antoniu Miclaus,系统应用工程师
本实验旨在构建和研究多种类型的基准电压源/稳压器,分为以下几部分:
► 可调基准电压源
► 增强基准电压源
► 分流稳压器
调节基准电压源
目标
可以将先前实验中的零增益放大器(Q1、R2)和稳定电流源(Q2、R3)与负反馈中的PNP电流镜级(Q3、Q4)配合使用,以构建在一定的输入电压范围内提供恒定或可调输出电压的电路。
材料
► ADALM2000主动学习模块
► 无焊面包板
► 一个2.2 kΩ电阻(或其他类似值)
► 一个100 Ω电阻
► 两个小信号NPN晶体管(2N3904或SSM2212)
► 两个小信号PNP晶体管(2N3906或SSM2220)
说明
面包板连接如图1所示。AWG1的输出驱动PNP晶体管Q3和Q4的发射极。Q3和Q4配置为电流镜,其基极与Q3的集电极相连。Q4的集电极连接到电阻R1。电阻R1和R2以及晶体管Q1按照2020年11月学子专区实验所示进行连接,“ADALM2000 实验: 零增益放大器。”由于Q2的V
BE
始终小于Q1的V
BE
,因此应从器件库存中选择Q1和Q2,使得(在相同的集电极电流下)Q2的V
BE
小于Q1的V
BE
。晶体管Q2的基极连接到Q1集电极的零增益输出。Q2的集电极连接到PNP电流镜的输入端,即Q3的基极和集电极。2+(单端)
示波器
输入用于
测量
Q4集电极上的输出电压。
图1.稳压器电路。
硬件设置
波形发生器1应配置为1 kHz三角波,峰峰值幅度为4 V,偏置为2 V。
示波器
通道2的单端输入(2+)用于
测量
Q4集电极上的稳定输出电压(负输入1-和2–应接地)。
图2.稳压器试验板电路。
程序步骤
绘制输出电压(在Q4的集电极处
测量
)与输入电压的关系曲线。在多少输入电压电平下,输出电压停止变化/调节?这称为压差。对于输入电压高于压差的情况,输入电压每变化一伏,输出电压变化多少?V
OUT
的变化/V
IN
的变化称为电压调整率。将可变电阻的输出节点接地。在输入电压固定(即连接到固定的Vp板
电源
)的情况下,
测量
电阻各种设置的输出电压。计算每个设置的电阻中的电流。输出电压与输出电流的关系有何变化?这称为负载调整。
图3.稳压器
示波器
XY图。
增强基准电压源
目标
上一节中稳压器电路存在的问题是,可用于输出负载的电流受到通过PNP Q3和Q4映射的NPN Q2提供的反馈电流的限制。我们希望构建一个电路,不仅在输入电压范围内,而且在输出负载电流范围内都能提供恒定或可调输出电压。这第二个电路利用发射极跟随器输出级为输出提供电流。
材料
► 一个2.2 kΩ电阻
► 一个100 Ω电阻
► 一个10 kΩ可变电阻(电位计)
► 一个4.7 kΩ电阻(可以是为所需电路操作选择的任何类似阻值电阻)
► 四个小信号NPN晶体管(2N3904和SSM2212)
说明
面包板连接如图4所示。晶体管Q1和电阻R1及R2依然配置为零增益放大器。晶体管Q2和可变电阻R3形成稳定的电流源。如果使用SSM2212匹配的NPN对,最好将其用于器件Q1和Q2。共发射极输出级Q3及其集电极负载R4提供增益。发射极跟随器Q4驱动输出节点并关闭负反馈环路。
图4.增强型稳压器。
硬件设置
波形发生器W1应配置为1 kHz三角波,峰峰值幅度为4 V,偏置为2 V。
示波器
通道2 (2+)用于
测量
Q4发射极上的稳定输出电压。
图5.增强型稳压器试验板电路。
程序步骤
重复
测量
此电路的压差、线路和负载调整。它们与第一个稳压器电路有何不同?
图6.增强型稳压器波形XY图。
分流稳压器
目标
可以将零增益放大器(Q1、R2)和稳定电流源(Q2、R3)与负反馈中的共发射极放大器级(Q3)配合使用,以构建在一定的输入电流范围内提供恒定或可调输出电压的2端口电路。
材料
► ADALM2000主动学习模块
► 无焊面包板
► 跳线
► 一个2.2 kΩ电阻(或其他类似值)
► 一个100 Ω电阻
► 一个1 kΩ电阻(或类似值)
► 一个10 kΩ可变电阻(电位计)
► 三个小信号NPN晶体管(2N3904和SSM2212)
说明
面包板连接如图7所示。函数发生器的输出驱动电阻R4的一端。电阻R1和R2以及晶体管Q1按照11月学子专区文章所示进行连接,”ADALM2000实验:零增益放大器(BJT)。”电阻R3和晶体管Q2按照2021年1月文章所示进行连接,”ADALM2000实验:稳定电流源。”如果使用SSM2212匹配的NPN对,最好将其用于器件Q1和Q2。添加Q3,将其发射极接地,基极连接到Q2的集电极,集电极连接到组合R1、R3、R4和
示波器
输入2+的节点上。
图
7.
带隙分流稳压器。
硬件设置
波形发生器W1应配置为1 kHz三角波,峰峰值幅度为4 V,偏置为2 V。
示波器
通道2的单端输入(2+)用于
测量
Q3集电极上的调节输出电压。
图8.带隙分流稳压器试验板电路。
程序步骤
配置
示波器
以捕获
测量
的两个信号的多个周期。确保启用XY功能。图9提供了
示波器
显示的图像示例。调节可变电阻R3时,观察输出电压的调节。
您可以在学子专区博客上找到问题答案。
关键词:
EETOP 官方微信
创芯大讲堂 在线教育
创芯老字号 半导体快讯
相关文章
上一篇:
英飞凌推出EasyPACK™ CoolSiC™ MOS
下一篇:
科锐携手高斯宝,为服务器电源市场带来
全部评论
最新资讯
最热资讯
10Gbps!全球最快!国产最强LPDDR5/5X 接
开盘大涨!完全自主可控、国产CPU第一股登
箩筐旗下泓达九通与西门子交通全资子公司予
新思科技推出面向台积公司N6RF工艺的全新射
研华推出国产x86处理器工业主板
SA:高通、苹果和联发科主导 Arm 移动计
6000 亿投资都没点补贴,英特尔威胁推迟美
RISC-V发布四项新规范
"杀死"GPU!集成2.6万亿晶体管、世界最大芯
据韩媒报道,三星(Samsung)否认3纳米因良
台积电一口气准备了五种3纳米工艺:第一种
高通推出全新 AI 软件栈产品组合,让 AI
高通推出全新 AI 软件栈产品组合,让 AI 部署更轻松
1+1>2储能加持传统能源发电 上海电气构建源网荷储一条龙解决方案
苹果再夺全球第一,重回上市公司市值首位
AMD 上线“GPU 比较工具”,可在不同游戏中与英伟达型号对比
苹果 AR 头戴设备要来了,CEO 蒂姆・库克几乎承认了
抢攻高端市场,联发科发布新旗舰:天玑 9000+
2021年NOR闪存价格上涨了23%,市场排名出炉:兆易创新销售额翻翻,位居第三
全球半导体市场亮起黄灯,但预计仍将增长
继续采用PAM4、512GB/S 速率再翻倍!PCIe 7.0 规范开始制定
大联大世平集团推出基于onsemi产品的240W可调光电源方案
比科奇凭业界首款5G小基站系统级芯片(SoC)斩获2022年度全球小基站论坛大奖
Pixelworks逐点半导体为《航海王热血航线》全方位升级手游显示体验
业界最热文章
一文带你了解降压型稳压芯片原理
USB供电的5.8 GHz RF LNA接收器,带
计算隔离式精密高速DAQ的采样时钟抖动的
LDO基础知识:噪声
关于阻抗匹配,这篇讲的太透彻了!顺带还
干货!高速串行Serdes均衡之FFE
SPI接口简介
对电阻使用的经验法则说不
经典架构新玩法:用单端仪表放大器实现全
体声波(BAW)是什么?TI推出突破性基于BAW
低碳时代,MPS引领AC/DC产品小型化高效率
高分辨率Δ-ΣADC中有关噪声的十大问题
实验:PN结电容与电压的关系
Hspice大全-+hspice(2008) for linxu和
交错式反相电荷泵——第二部分:实现和结
开关模式电源电流检测——第一部分:基本
相控阵天线方向图——第1部分:线性阵列
高性能、低成本的CMOS运算放大器
5G PA的线性化技术
官宣了!ADI 209亿美元正式收购美信!今
ET创芯网(EETOP)-电子设计论坛、博客、超人气的电子工程师资料分享平台
论坛
博客
大讲堂
人才网
直播课
关于我们
联系我们
隐私声明
@2003-2022 EETOP
京ICP备10050787号
京公网安备:11010502037710