[摘要]美国宇航局科学家称将在未来20年对人类未知的物理学进行研究,寻找时空扭曲的方法,利用虫洞进行空间飞行。

美国宇航局宣布了未来20年内的任务规划,对15大航空航天领域进行攻克,其中之一就是研究时空理论
据国外媒体报道,美国宇航局的航空航天技术一直处于世界前列,来自华盛顿总部的消息称,美国宇航局计划利用20年的时间对空间扭曲和虫洞进行研究,科学家表示未来星际任务中机器人将是主力军。为了实现对虫洞的探索,美国宇航局科学家认为其中涉及到人类目前还未知的物理学,研究这块内容能够带领我们接近虫洞的真相,比如我们可以发射探测器对宇宙量子真空进行研究,改进我们的引力理论。一旦完成了为未知物理的研究,我们就可以畅游宇宙空间了。
美国宇航局哈罗德-怀特博士认为时空扭曲能够缩短空间飞行的时间,看似遥不可及的星系其实只要瞬间就能抵达。美国宇航局在近日提出了15大未来航空航天技术规划,其中就涉及到对宇宙理论的研究,当然还包括人类探索地外天体所需要的着陆技术、纳米技术等。最让人感兴趣的要数核动力引擎,美国宇航局认为未来20年将建立核动力推进系统的雏形,突破现有的实验室瓶颈,打造各种适合星际旅行的动力。
戴维-米勒博士是美国宇航局华盛顿总部的首席技术专家,他认为未来我们将前往太阳系
边缘进行探索,新型动力的研发是必不可少的,核动力装置也无法将我们带到更远,而利用时空扭曲的动力装置才是终极目标。对此,美国宇航局在15大任务规划
中就加入了对时空性质的研究,深入对引力、惯性系、量子真空以及其他基本物理进行研究,并引领我们进入时空扭曲与虫洞的物理学。
根据现有的理论,利用虫洞与时空扭曲技术能够让宇宙飞船轻松完成巨大时空距离的旅程,三维空间中的遥远距离在高维时空中不算太远,只要瞬间就能抵达。美国宇航局下属的实验室前不久还提出了曲率驱动的概念,前往4光年外的半人马座只要两周。不过也有研究质疑曲率驱动的实验方案存在问题,违背了动量守恒。可以肯定的是,科学家们已经在着手研究利用时空扭曲前进的动力系统,从而实现超光速旅行。
除了极为科幻的曲率驱动外,美国宇航局还对各种先进动力进行研究,比如反物质发动机、太阳帆等。我们只要通过一束激光就能驱动飞船,如果这项技术成熟,前往火星之旅就可以大大缩短,2033年的火星任务危险性将大大降低,至少宇航员暴露在银河宇宙射线中的时间会缩短。在未来10年,美国宇航局还将对小行星进行登陆,寻找登陆地外天体的方法,因为我们在登陆火星之前可能要登陆火卫一。
延伸阅读:多国科学家合力阐述物理学未知领域
有一种粒子公然藐视物理学家标准模型的规则,它就是中微子。根据理论,中微子不具有质量。但是,事实情况是,中微子有质量,从理论的角度来说,它们表现得“天马行空、不受拘束”。
美国黑堡镇弗吉尼亚理工学院理论家Patrick Huber说:“在中微子物理学领域,允许和标准模型存在10%、20%或50%的偏差。”对那些寻求新物理的人而言,“中微子是一个值得钻研的领域”。
中微子源于一种形式的核衰变,与其他物质的相互作用力很弱。中微子的表现形式很多样,1998年,物理学家利用日本一个矿内的超级神冈探测器,发现中微子具有质量——尽管不足电子的十亿分之一。
但根据爱因斯坦的相对论,中微子是无质量的,它们不得不以光速飞行。在这种情况下,时间对于中微子而言几近停止,变化也可以忽略不计。
对于中微子各种“不合常理”的表现,美国伊利诺伊州埃文斯顿市西北大学理论家André de Gouvêa说:“你绝对可以说中微子在物理学领域是一颗脱颖而出的新星。”中微子有三种类型——电子、μ介子和τ子,在振动中它们可以从一种类型转变成另一种类型,这一现象可以被6种参数描述:质量上的3种不同(这决定着振荡的速度)和3种不同的混合角(这决定从一种形态转为另一种的差异)。在过去的18个月中,这一模型聚焦的范围已经进一步缩小。
2012年3月,中国大亚湾反应堆中微子实验工程的物理学家
测量了最后一个未知的混合角,并发现其比很多人曾经预想的大。3个已知的混合角都大
于零度,结果显示中微子和反中微子能够以不同的方式振荡——这种被称为宇称不守恒的不对称性有助于解释为何宇宙中的物质远多于反物质。
美国伊利诺伊州巴达维亚市费米国家加速器实验室(Fermilab)的Robert Plunkett说,大亚湾反应堆中微子实验表明,如果宇称不守恒确实存在,那么它能够被相对容易地观测到。“曾经被认为很艰巨的任务,现在已处于我们的掌握之中。”他说。
今年3月,这个新模型更为引人注目,宇宙学家利用欧洲航天局的普朗克飞船完成了其宇宙微波背景实验。该分析探究了中微子形态的数量,对可能存在
的第四种中微子提出了怀疑。de Gouvêa说:“目前确切证实的3种类型的中微子相互作用良好。这个结果也许令人失望,但这就是事实。”
物理学家计划开展以前从未有过的更大规模的实验:将中微子发射到距离地球数
百公里外的区域,允许它们在飞行中改变形态。在美国,被提议的长基线中微子实验将利用储存在南达科他州里德附近废弃的霍姆斯特克矿地下的巨型探测器,探测
从1300公里外的Fermilab发出的中微子束。在日本,计划中的Hyper神冈实验将探测从295公里处发出的中微子,探测器的规模是超级神冈的
20倍。
物理学家希望,通过采取一系列不同的
测量方法,能找到现有中微子模型间的差异。美国纽约布鲁克海文国家实验室物理学家Mary Bishai说:“如果我们试图以不同的方式观测中微子振荡,惊喜是否会出现?3种形态的中微子模型是否会被瓦解?”
物理学家还希望首先知晓中微子是如何获得质量的。和标准模型中的其他粒子一样,中微子能够从希格斯场的作用中获得质量。或者,它们可能通过所谓的翘翘板机制获得质量。但是要实现这一目标,中微子必须有一个特性:它是其自身的反粒子。
为了进一步证实猜想,物理学家正在使用地下探测器寻找一种被称为“无中微子双β衰变”的核衰变新类型,这种情况只有在中微子是自身反粒子时才会发生。迄今为止,还没有出现一些强有力的证据。
7月,意大利格兰萨索国家实验室地下锗探测器阵列(GERDA)实验显示,先前宣称观测到的锗-76同位素是不实的。如果衰变确实存在,很多研究人员怀疑需要更大型(重达1吨或数吨)的探测器才能进行观测。
尽管中微子物理学“不走寻常路”——与标准模型存在偏差,其仍是研究人员热衷研究的领域,这些难以捉摸的粒子总有着无比强大的诱惑力。