英特尔发布一系列新进展,推进神经拟态计算的应用开发

2022-09-29 12:22:57 来源:英特尔

通过去年发布的Loihi 2第二代研究芯片和开源Lava软件框架,英特尔研究院正在引领神经拟态计算的发展。作为英特尔神经拟态技术商业化目标的一部分,英特尔研究院正在向开发提供工具,以便将开发过程推进到下一阶段。例如,8芯片Loihi 2开发板Kapoho Point,就可以通过堆叠满足大规模工作负载的需求,并可实现与低延迟事件相机(event-based vision sensors)的直接互连。

 

 图片94.png

Loihi 2英特尔的第二代神经拟态研究芯片。它支持新型类脑算法和应用程序,提供更快的处理速度与更高的资源密度,同时提高能效。(图片来源:英特尔公司)

 

此外,英特尔研究院还更新了开源Lava框架,以支持可编程神经元、整型脉冲神经元、卷积网络和持续学习。从最新版Lavav0.5)开始,与Loihi 1系统上的相同工作负载相比,这些新功能使Kapoho Point运行深度学习应用的速度提高了12 倍,能耗降低了151 此外,英特尔还通过英特尔神经拟态研究社区(INRC)启动了八个英特尔赞助的大学项目。

 

向社区成员交付下一代神经拟态系统 

 

基于Loihi 2的开发板Kapoho Point是一个紧凑系统(compact system),非常适合从无人机到卫星和智能汽车的各种小尺寸设备和应用Kapoho Point可以运行包含多达10亿个参数的AI模型,也能解决涵盖多达800万个变量的优化问题。与在CPU上运行的先进求解器相比,它把速度提高了10倍以上,能耗降低了1000此外,还能通过堆叠多个开发板实现Kapoho Point的扩展,解决更大规模的问题。

 

 图片95.png

基于Loihi 2的开发板Kapoho Point是一个紧凑系统,非常适合从无人机到卫星和智能汽车的各种小尺寸设备和应用。(图片来源:英特尔公司)

 

美国空军研究实验室(AFRL)是研究社区中第一个启用Kapoho Point的成员,正在把它用于内部研究,涉及基于脉冲神经网络的学习以及需要实时优化的问题。数据处理与开发高级科学家Qing Wu博士表示:由于美国空军研究实验室的任务是在空中和太空中进行的,这使得移动平台的空间、重量和功率预算(power budget)非常有限。对在这种环境中运行AI算法的需求而言,神经拟态计算技术提供了非常出色的计算解决方案。

 

通过Lava软件框架,降低神经拟态开发的门槛

 

对开源、模块化且可扩展的Lava软件框架的更新包括面向Loihi 2功能集的一系列改进,例如可编程神经元、分级事件和持续学习。

 

 图片96.png

英特尔研究院更新了开源Lava框架,以支持可编程神经元、整型脉冲神经元、卷积网络和持续学习。(图片来源:英特尔公司)

 

 

神经拟态生态系统项目

 

英特尔神经拟态研究社区(INRC)已经启动了八个由英特尔支持的大学项目,包括乔治梅森大学、昆士兰科技大学、格拉茨技术大学、苏黎世大学 、布朗大学、宾夕法尼亚州立大学、滑铁卢大学和哥廷根大学。

 

研究项目包括自适应机器人定位、可用于脑机接口的无线仿生传感脉冲解码、神经拟态贝叶斯优化、听觉特征检测以及新型类脑架构和算法。

 

2018年成立以来,英特尔神经拟态研究社区成员数已增加到180多个,包括大学实验室、政府机构以及埃森哲、联想、罗技和梅赛德斯-奔驰等全球领先企业。

 

接下来,英特尔研究院将为开发人员不断提供新工具,让他们能更轻松地开发解决现实问题的应用,并继续支持社区研究。

 

 

--------------------------------------

1Loihi 2SDNN结果是基于20229月进行的Lava v0.5基准测试而得出的,当时在Loihi 2上作为一个Sigma-Delta神经网络执行了9PilotNet DNN推理工作负载,对比了在Loihi 1上使用SNN频率编码执行的相同网络。从具有相同拓扑结构和相同8位参数数量的传统DNN执行方式中计算出的等价DNN运算数。参看BojarskiMariusz等人《面向自动驾驶汽车的端到端学习》。arXiv预印版论文arXiv:1604.07316 (2016)


  1. EETOP 官方微信

  2. 创芯大讲堂 在线教育

  3. 创芯老字号 半导体快讯

相关文章

全部评论

  • 最新资讯
  • 最热资讯
@2003-2022 EETOP

京ICP备10050787号   京公网安备:11010502037710