基于驱动LED串的DCM升压转换器的详细理论分析

2013-12-10 16:18:43 来源:本站原创

固定频率升压转换器非常适合于以恒流模式驱动LED串。这种转换器采用不连续导电模式(DCM)工作,能够有效地用于快速调光操作,提供比采用连续导电模式(CCM)工作的竞争器件更优异的瞬态响应。当LED导通时,DCM工作能够提供快速的瞬态性能,为输出电容重新充电,因而将LED的模拟调光降至最低。为了恰当地稳定DCM升压转换器,存在着小信号模型。然而,驱动LED的升压转换器的交流分析,跟使用标准电阻型负载的升压转换器的交流分析不同。由于串联二极管要求直流和交流负载条件,在推导最终的传递函数时必须非常审慎。

本文(即第1部分)不会使用不连续导电模式(DCM)升压转换器的传统小信号模型,而将使用基于所研究转换器之输出电流表达式的简化方法。在第2部分(实际考虑),我们将深入研究应用方案,验证测量精度,并与理论推导进行比较。

为LED串供电的升压转换器

图1显示了驱动LED串的恒定频率峰值电流工作模式升压转换器的简化电路图。输出电流被感测电阻Rsense持续监测。相应的输出电压施加在控制电路上,持续调节电源开关的导通时间,以提供恒定的LED电流Iout。这就是受控的输出变量。

驱动1


图1驱动LED串以发光的升压转换器。输出电流被稳流至设定点值。

发光时, LED串会在LED连接的两端产生电压。这电压取决于跟各个LED技术相关的阈值电压VT0及其动态阻抗rd。因此,LED串两端的总压降就是各LED阈 值电压之和VZ,而而动态阻抗rLEDs表示的是LED串联动态阻抗之和。图2显示的是采用的等效电路。您可以自己来对LED串压降及其总动态阻抗进行特 征描述。为了测量起见,将LED串电流偏置至其额定电流IF1。一旦LED达到热稳定,就测量LED串两端的总压降Vf1。将电流改变为稍低值IF2并测量新的压降VF2。根据这些值,您可计算出总动态阻抗,即:

驱动2

“齐纳”电压约等于LED串电压VF1减去rLEDs与测量点电流之积:

驱动3


我们假定以100 mA电流来偏置我们的LED串。测量出的总压降为27.5 V。我们将电流减小至80 mA,新得到的压降值就是26.4 V。总动态阻抗的计算很简单:

驱动4


根据等式,我们可以简单地计算出齐纳电压:

驱动5

驱动6


图2:LED采用串联连接,故需对它们的阈值电压进行累加;而总动态阻抗是串联连接的各个LED动态阻抗之和。


回头再看图1。LED串与感测电阻Rsense串联。总交流(ac)阻抗因此就是两者之和:

驱动7

图3是大幅简化的等效直流(dc)电路图。直流输出电压Vout等于输出电流Iout与电阻Rac之积再加齐纳电压:

驱动8

在交流条件下,由于齐纳电压恒定,故上述等式可简化为:

驱动9

驱动10

图3:这直流简化电路图显示了等效齐纳二极管及其动态阻抗。

简化模型

电流源实际上指的是从输入电源获得并无损耗地传输到输出的电流。电流源可以被控制电压Vc向上或向下调节,而Vc逐周期设定电感峰值电流。控制器通过升压 转换器开关电流感测电阻Ri来观测电感峰值电流,并以此工作。当Ri两端电压与控制电压匹配时,电源开关就被指示关闭。

如果我们现在来考虑交流电路图,就要考虑电容及其寄生元件,如图4所示。齐纳元件自身并无影响,因为在交流调制期间其电压保持恒定:仅其动态阻抗rLEDs需要予以考虑,融合到Rac中。如等式(5)所述。

11副本

图4:交流模型使用跟电容模型相关的总阻抗Rac。

根据此图,有可能表达出控制电压被调制时的小信号输出电压电平:

驱动11

如前所述,电流源值取决于控制及输出电压。为了推导出小信号等效模型,我们解析了跟控制电压Vc及输出电压Vout相关的Iout偏导数:

驱动12

结合等式,可以改写等式如下:

驱动13

已经推导出DCM升压转换器直流传递函数,即:

驱动14

在此等式中,转换器的直流阻抗(Rdc)必须以 替代。新的等式就变成:

驱动15


  1. EETOP 官方微信

  2. 创芯大讲堂 在线教育

  3. 创芯老字号 半导体快讯

相关文章

全部评论

@2003-2024 EETOP